首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21290篇
  免费   1669篇
  国内免费   1581篇
  2024年   15篇
  2023年   222篇
  2022年   327篇
  2021年   1161篇
  2020年   780篇
  2019年   957篇
  2018年   938篇
  2017年   692篇
  2016年   956篇
  2015年   1317篇
  2014年   1598篇
  2013年   1747篇
  2012年   1929篇
  2011年   1788篇
  2010年   1104篇
  2009年   1001篇
  2008年   1144篇
  2007年   1011篇
  2006年   869篇
  2005年   743篇
  2004年   571篇
  2003年   551篇
  2002年   445篇
  2001年   324篇
  2000年   325篇
  1999年   326篇
  1998年   189篇
  1997年   170篇
  1996年   179篇
  1995年   176篇
  1994年   158篇
  1993年   118篇
  1992年   161篇
  1991年   117篇
  1990年   111篇
  1989年   78篇
  1988年   54篇
  1987年   46篇
  1986年   37篇
  1985年   36篇
  1984年   19篇
  1983年   16篇
  1982年   16篇
  1981年   7篇
  1980年   4篇
  1979年   2篇
  1978年   1篇
  1975年   2篇
  1966年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
PRP4 encodes the only kinase among the spliceosome components. Although it is an essential gene in the fission yeast and other eukaryotic organisms, the Fgprp4 mutant was viable in the wheat scab fungus Fusarium graminearum. Deletion of FgPRP4 did not block intron splicing but affected intron splicing efficiency in over 60% of the F. graminearum genes. The Fgprp4 mutant had severe growth defects and produced spontaneous suppressors that were recovered in growth rate. Suppressor mutations were identified in the PRP6, PRP31, BRR2, and PRP8 orthologs in nine suppressor strains by sequencing analysis with candidate tri-snRNP component genes. The Q86K mutation in FgMSL1 was identified by whole genome sequencing in suppressor mutant S3. Whereas two of the suppressor mutations in FgBrr2 and FgPrp8 were similar to those characterized in their orthologs in yeasts, suppressor mutations in Prp6 and Prp31 orthologs or FgMSL1 have not been reported. Interestingly, four and two suppressor mutations identified in FgPrp6 and FgPrp31, respectively, all are near the conserved Prp4-phosphorylation sites, suggesting that these mutations may have similar effects with phosphorylation by Prp4 kinase. In FgPrp31, the non-sense mutation at R464 resulted in the truncation of the C-terminal 130 aa region that contains all the conserved Prp4-phosphorylation sites. Deletion analysis showed that the N-terminal 310-aa rich in SR residues plays a critical role in the localization and functions of FgPrp4. We also conducted phosphoproteomics analysis with FgPrp4 and identified S289 as the phosphorylation site that is essential for its functions. These results indicated that FgPrp4 is critical for splicing efficiency but not essential for intron splicing, and FgPrp4 may regulate pre-mRNA splicing by phosphorylation of other components of the tri-snRNP although itself may be activated by phosphorylation at S289.  相似文献   
992.
Age‐related cataract is among the most common chronic disorders of ageing and is the world's leading blinding disorder. Long non‐coding RNAs play important roles in several biological processes and complicated diseases. However, the role of lncRNAs in the setting of cataract is still unknown. Here, we extracted total RNAs from the transparent and age‐matched cataractous human lenses, and determined lncRNA expression profiles using microarray analysis. We found that 38 lncRNAs were differentially expressed between transparent and cataractous lenses. 17 of 20 differentially expressed lncRNAs were further verified by quantitative RT‐PCRs. One top abundant lncRNA, MIAT, was specifically up‐regulated both in the plasma fraction of whole blood and aqueous humor of cataract patients. MIAT knockdown could affect the proliferation, apoptosis and migration of Human lens epithelial cells (HLECs) upon oxidative stress. Posterior capsule opacification (PCO) is a common complication of cataract surgery, which is associated with abnormal production of inflammatory factors. MIAT knockdown could repress tumour necrosis factor‐α‐induced abnormal proliferation and migration of HLECs, suggesting a potential role of MIAT in PCO‐related pathological process. Moreover, we found that MIAT acted as a ceRNA, and formed a feedback loop with Akt and miR‐150‐5p to regulate HLEC function. Collectively, this study provides a novel insight into the pathogenesis of age‐related cataract.  相似文献   
993.
994.
995.
996.
Mesenchymal stem cells (MSCs) possess an immunoregulatory capacity and are a therapeutic target for many inflammation‐related diseases. However, the detailed mechanisms of MSC‐mediated immunosuppression remain unclear. In this study, we provide new information to partly explain the molecular mechanisms of immunoregulation by MSCs. Specifically, we found that A20 expression was induced in MSCs by inflammatory cytokines. Knockdown of A20 in MSCs resulted in increased proliferation and reduced adipogenesis, and partly reversed the suppressive effect of MSCs on T cell proliferation in vitro and inhibited tumour growth in vivo. Mechanistic studies indicated that knockdown of A20 in MSCs inhibited activation of the p38 mitogen‐activated protein kinase (MAPK) pathway, which potently promoted the production of tumour necrosis factor (TNF)‐α and inhibited the production of interleukin (IL)‐10. Collectively, these data reveal a crucial role of A20 in regulating the immunomodulatory activities of MSCs by controlling the expression of TNF‐α and IL‐10 in an inflammatory environment. These findings provide novel insights into the pathogenesis of various inflammatory‐associated diseases, and are a new reference for the future development of treatments for such afflictions.  相似文献   
997.
The main mechanism of toxicity of organophosphate (OP) and carbamate (CB) insecticides is their irreversible binding and inhibition of acetylcholinestrase (AChE), encoded by ace1 (acetylcholinestrase gene 1), leading to eventual death of insects. Mutations in AChE may significantly reduce insects susceptibility to these pesticides. Bombyx mori is an important beneficial insect, and no OP‐ or CB‐resistant strains have been generated. In this study, wild‐type ace1 (wace1) and mutant ace1 (mace1) were introduced into BmN cells, confirmed by screening and identification. The expression of wace1 and mace1 in the cells was confirmed by Western blot and their expression levels were about 21‐fold higher than the endogenous ace1 level. The activities of AChE in wace1 and mace1 transgenic cells were 10.6 and 20.2% higher compared to control cells, respectively. mace1 transgenic cells had higher remaining activity than wace1 transgenic cells under the treatment of physostigmine (a reversible cholinesterase inhibitor) and phoxim (an OP acaricide). The results showed that ace1 transgene can significantly improve ace1 expression, and ace1 mutation at a specific site can reduce the sensitivity to AChE inhibitors. Our study provides a new direction for the exploration of the relationship between AChE mutations and drug resistance.  相似文献   
998.
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号